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Abstract

Many parallel algorithms exist for finding a maximal independent set (MIS) of
nodes in a graph. Despite the development of many parallel MIS algorithms, the
comparison of these algorithms has not been well investigated. The concept of
finding a MIS implies finding a large set of independent nodes is ideal. Given this
notion of larger MISs being better, it is beneficial to know which parallel algorithm
provides the largest MISs. Many other graph algorithms utilize MISs and could
benefit from obtaining larger sets of independent nodes. This work investigates
MIS sizes returned by parallel algorithms on a variety of graphs. Additionally, the
novel parallel algorithm, Degree One, is introduced and shows an increase in MIS
size ranging from 2.7% to 8% when compared to the next best MIS algorithm. The
algorithm contains a hyperparameter which allows for a trade off between MIS
size and the amount of parallel rounds needed.

1 Introduction

A maximum independent set is the largest independent set of nodes within a graph. The problem of
finding a maximum independent set is well studied and is known to be NP-complete [13]. A related
problem is finding a maximal independent set (MIS) of nodes. A MIS of nodes in a graph is a set
where no two nodes are adjacent and a node cannot be added to the set without being adjacent to any
node already in the set. A trivial linear time sequential algorithm involves iterating over the set of
nodes and adding a node to the independent set if none of its neighbors are already in the independent
set. To make use of multiple processors simultaneously many parallel MIS algorithms have been
developed [2], [4], [5], [6], [11]. These algorithms all involve the general idea of a parallel round. A
high level explanation is during each parallel round the independent set is grown by each processor
iterating over its delegated nodes. These rounds occur until maximality is achieved. Thus, the number
of rounds needed to generate an MIS is common in the analysis of parallel MIS algorithms. How the
vertices are chosen to be added to the MIS each round is how the algorithms primarily differ.

2 Related Work

The first parallel MIS algorithm was introduced by Karp and Wigderson and executed in O(log4 n)
time with O(n/log3n) processors [6]. A deterministic parallel MIS algorithm was developed in [5]
with O(n/log3n) run-time with a linear amount of EREW-processors. At around the same time, [2]
and [11] both improved upon previous algorithms with each developing an algorithm with expected
run-time of O(log2 n) w.h.p. when using O(m) processors. Additionally, an O(log2 n) algorithm
which allows for a trade off between parallelism and total work was proposed in [4].

While run-time analysis is vital to justifying the efficiency of these algorithms, the quality of MIS
found by each algorithm should also be evaluated. Some of the algorithms, such a Luby’s and Alon’s
utilize vertex degree’s when calculating the the probability that a vertex is added to the MIS [2], [11].
A larger MIS would be of use in a variety of applications and algorithms. There are many other
graph problems where obtaining a larger MIS would provide better results such as maximal matching,



graph coloring, vertex cover, and correlation clustering [1],[3],[6],[14]. Therefore, knowing which
parallel algorithm generates a larger MIS on average, potentially influences the implementation of
other algorithms.

3 Preliminaries

3.1 Notation

The current section intends to define the notation used throughout the paper. A graph is defined as
G = (V,E), where V is the set of vertices or nodes within a graph and E is the set of edges which
connect two vertices (i, j) in the graph. In this work all graphs are undirected and unweighted. A
node’s degree is represented as d(v), and a node’s set of neighbors is represented as N (v).

3.2 Parallel MIS Algorithms

For the sake of space, the pseudo-code of each parallel MIS algorithm compared in this work will be
forgone; however, the following is a brief description of each algorithm. As mentioned previously,
each algorithm involves continually iterating over the set of nodes and adding some to the independent
set in parallel rounds.

In Luby’s algorithm, each parallel round has two main components [11]. First, each v ∈ V ′ is added
to a set X with a probability 1/(2d(v)). Where V ′ is the set of all nodes who can possibly be placed
in the MIS, i.e. nodes which do not have neighbors in the MIS and are not in the MIS. Then, for
every pair of nodes u, v ∈ X , if (u, v) ∈ E, remove the node with the smaller degree from X . Lastly,
add the set X to the independent set and remove all nodes in X from V ′.

The steps of a parallel round in Alon et al.’s algorithm [2] are very similar to Luby’s. Once again,
each v ∈ V ′ is added to a set X , but this time with probability 1/d(v). Then, for every pair of nodes
u, v ∈ X , if (u, v) ∈ E, remove u from X with probability d(v)/(d(v) + d(u)), else remove v.
Meaning the node with the lower degree is more likely to be added to the MIS. Again, the round
concludes by adding the set X to the independent set and removing all nodes in X from V ′.

Blelloch et al. introduced a simpler algorithm which does not utilize the degree of nodes [4]. First
produce a random permutation of the set of nodes in the graph. Then, every round for each v ∈ V ′

add v to the MIS if none of v’s neighbors occur earlier in the random permutation. Additionally,
remove v and its neighbors from V ′.

4 Degree One Algorithm

The proposed Degree One algorithm was designed with the intention of finding larger maximal
independent sets. Simply adding all the nodes which have a degree of one is a simple way of
increasing the size of a MIS.
Theorem 1. Given a graph G, the maximum independent set of nodes in G will include every node
with a degree of one, unless the degree one node’s neighbor also has a degree of one.

Proof. Given a node v with d(v) = 1 and its single neighbor u with d(u) = x, where x > 1.
Adding v to an independent set of nodes I will eliminate the possibility of one node being added
to I . However, adding u to I will eliminate x nodes from being added to I . In the case, where the
neighboring nodes v and u both have a degree of one, adding either node to I will eliminate one node
from being added to I . Therefore, the maximum independent set will always contain every node with
a degree of one, and contain a single node from a disconnect component consisting of two nodes.

Theorem 1 references the maximum independent set of nodes in a graph, but with the premise that
larger MISs are better, applying the same principle will result in improved MIS sizes. Algorithm 1
shows the pseudo-code for the Degree One algorithm. Every parallel round contains two main parts.
The first part identifies nodes within V ′ which have a degree of one and adds them to the MIS. These
degree one nodes and their neighbors are removed from V ′. If a node which has a degree of one
has a neighbor which is also has a degree of one, then only one of the two nodes is added to the
MIS. Similar to obtaining the 2-cores of a graph, this process of removing degree one nodes and
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their neighbors is done recursively. Unless G is a tree, eventually there will be no degree one nodes
remaining in V ′. When this occurs, the second part of the algorithm executed by performing a single
round based on Luby’s algorithm. Algorithm 2 show this process. The main difference between
this algorithm and Luby’s is when two neighboring nodes are selected to be added to the MIS, the
node with the lesser degree is added. This follows the same idea behind adding degree one nodes, i.e.
adding nodes with lower degree gives more nodes the opportunity to be included in the MIS. Each
part of the algorithm respectively can easily be executed in parallel in shared or distributed memory
with minor implementation differences. This algorithm also contains a hyperparameter rmax which
allows for a limit to be set on the amount of recursive degree one removals performed consecutively.
This allows for a trade-off between the size of the MIS, and the number of rounds performed by the
algorithm. Along with a comparison of other parallel MIS algorithms, the results show how different
rmax values effect the MIS sizes returned and the number of rounds needed.

Algorithm 1 DegreeOneMIS
I ← ∅
G′ = (V ′, E′)← G = (V,E)
r ← 0
while V ̸= ∅ do

while ∃u ∈ V ′ where d(u) = 1 and r < rmax do
D ← All nodes in V ′ of degree one
Remove at random nodes from D which are apart of a disconnected two nodes component
I ← I ∪D
V ′ ← V ′ − (D ∪N (D)

end while
r ← r + 1
X ← AlteredLubyRound(V’)
I ← I ∪X
V ′ ← V ′ − (X ∪N (X))

end while
return I

Algorithm 2 AlteredLubyRound [11]
X ← ∅
for all v ∈ V ′ do

Randomly choose to add v to X with probability 1
2·d(v)

if d(v) = 0 then
Add v to X

end if
end for
for all (v, w) ∈ E′ do

if v ∈ X and w ∈ E′ then
if d(v) ≥ d(w) then ▷ Main difference compared to the original Luby’s algorithm

X ← X − w
end if

end if
end for
return X

5 Approach

For simplicity, the parallel algorithms are implemented as sequential algorithms; however, this
has have no effect on the MISs produced. Each parallel round involves iterating over V and E.
Therefore, every "parallel" round, a single processor will iterate over the sets rather than the work
being distributed to many processors. Since a true parallel implementation is not utilized, a run-time
analysis is not provided; however, the average number of rounds required by each algorithm is
analyzed.
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Table 1 shows the various graphs used in the analysis. Most of the graphs are based on social
networks; however, the topologies and sizes vary. The Powergrid graph is the most unique of the
group. All data collected is based on generating 100 MISs for each graph for every algorithm.

Table 1:

Name Description n m Source

Enron Email communication network from Enron 36692 183831 [9]
Powergrid Western Power grid of the United States 4941 6594 [7]
Citation Arxiv Physics paper citation network 34546 421578 [8]
Facebook1 Social circles from Facebook 4039 88234 [10]
Facebook2 Facebook page-page network 22470 171002 [12]

6 Results

As seen in figure 1, the Degree One algorithm out performs all other MIS algorithms with respect to
MIS size. Among the established algorithms, Alon’s generated, on average, larger MISs; however,
the increase is small compared to the other two algorithms. In comparison, Blelloch’s algorithm was
the worst. This is likely due to Blelloch’s algorithm not considering a node’s degree when adding it to
the MIS. When comparing the Alon and Degree One algorithms, Degree One significantly increases
the average MIS size on many of the graphs evaluated. The Enron, Powergrid, Citation, Facebook1,
and Facebook2 graphs saw an increase in average MIS size of 2.7%, 8%, 7.5%, 4.6%, and 7.3%
respectively. These results show the low density and tree like topology of the Powergrid graph, are
ideal for the Degree One algorithm.

Despite Degree One utilizing a slightly altered version of Luby’s algorithm, it still greatly outperforms
Luby’s. During a parallel round of Luby’s algorithm, if two nodes which share an edge are to be added
to the MIS, only the node with the greater degree is added. Logically, this means more neighboring
nodes are eliminated from possibly being included in the MIS. Whereas in Degree One, the smaller
degree node is added to the MIS; thus, less neighbors are eliminated and the resulting MIS is larger.

Figure 1: Average MIS size produced by each parallel algorithm on a variety of graphs. For each
graph, the average is calculated from 100 MISs generated by each algorithm.

The Degree One algorithm returns larger MISs; however, table 2 shows the average number of parallel
rounds needed is significantly greater than the other algorithms. In this analysis, a round is considered
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to be each time V ′ is iterated over in parallel. Therefore, every iteration which searches for degree
one nodes to add to the MIS is considered a round. In table 2, the average rounds needed by Degree
One is based on the unbounded rmax value. Table 3 shows that lower rmax values decrease the
average number of parallel rounds. An rmax value of zero means that degree one nodes were never
searched for and only algorithm 2 was utilized to add nodes to the MIS.

Table 4 reveals that smaller rmax values produce MIS sizes that are comparable to when rmax is
None (unbounded). When rmax equals zero, the average MIS size is still larger than Luby’s, Alon’s,
and Blelloch’s, algorithms. This result indicates that much of the increase in MIS size produced by
Degree One can be attributed to the altered Luby’s algorithm.

Table 2: Average parallel rounds needed by each algorithm. The rmax value for the Degree One
algorithm is unbounded.

Algorithm

Graph Luby Alon Blelloch Degree One

Enron 11.56 6.15 5.02 56.53
Powergrid 7.03 3.61 3.72 30.01
Citation 11.05 6.26 5.88 72.26
Facebook1 10.77 6.55 5.14 49.48
Facebook2 10.24 6.08 5.25 69.04

Table 3: Average parallel rounds needed to find MIS using Degree One algorithm with various rmax

values. The rmax value none is when no limit was set on the number of consecutive degree one
rounds.

rmax value

Graph 0 1 2 3 4 5 None

Enron 23.34 30.99 36.05 38.77 41.79 44.37 56.53
Powergrid 10.76 15.21 17.28 19.07 21.46 22.14 30.01
Citation 22.0 30.85 37.51 43.97 49.7 54.36 72.26
Facebook1 21.76 30.92 37.41 43.39 48.14 47.5 49.48
Facebook2 20.46 28.69 34.47 39.71 44.03 47.47 69.04

Table 4: Average MIS size returned using Degree One algorithm with varying rmax values. The
rmax value none is when no limit was set on the number of consecutive degree one rounds.

rmax value

Graph 0 1 2 3 4 5 None

Enron 21951 21993 22013 22023 22026 22035 22039
Powergrid 2671 2697 2712 2717 2722 2724 2727
Citation 11864 11902 11930 11937 11938 11939 11940
Facebook1 908 914 912 914 913 912 914
Facebook2 10237 10293 10320 10338 10340 10343 10353

7 Conclusion

In this work, we presented the novel parallel algorithm Degree One which improves the size of
MISs returned from a variety of graphs. The rmax hyperparameter proved to provide a trade-off
between the number of parallel rounds and the size of the MIS calculated. Additionally, it was
found that smaller rmax values provide slightly smaller MIS sizes, but with less computational cost,
when compared to larger rmax values. Among the established parallel algorithms, Alon’s showed to
provide the largest MISs while also requiring few parallel rounds.
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Many questions remain to be explored regarding this work. Developing theoretical bounds on
the number of parallel rounds needed by Degree One should be further explored. Similar to the
polylogarithmic bounds in other MIS algorithms, Degree One could posses a similar property.
Furthermore, work should be conducted on developing other parallel algorithms which are capable of
generating larger MISs while also being computationally cheap. Lastly, applying these larger MISs to
suitable applications such as graph coloring or correlation cluster could provide motivation to further
this work.
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