Visibility-Based Escort Problem

Drew Beathard

Abstract—In this work we present a solution to the visibility-
based escort problem — a problem closely related to the well-
researched pursuit-evasion problem. This novel problem entails
a single escort agent tasked with protecting and escorting one or
multiple VIP agents from line-of-sight threats in a 2-dimensional
environment. The algorithm takes as inputs a simply-connected
polygonal environment, the starting location of the escort, and a
goal location where the VIP agents should be safely moved to. The
solution comes in the form of a path that is not a sequence of exact
locations but rather a sequence of regions in which a VIP agent
can safely exist. We search for a solution using Breadth First
Search(BFS) across a graphical construction of the environment.
The proposed method is capable of calculating non-trivial escort
agent strategies from various starting configurations in diverse
environments.

Index Terms—path planning, pursuit-evasion, robotic escort

I. INTRODUCTION

The visibility-based pursuit-evasion problem is a well-
researched problem within the field of robotics that been
studied in many different variations [1], [2], [3], [4], [9]. The
motivation of the visibility-based pursuit-evasion problem is
to find a path for one or multiple pursuers to take which
guarantees the capture of one or multiple evaders.

Visibility-based pursuit-evasion solutions can be applied to
many real-world scenarios which inspires ongoing research
in the area. One variation involves the shortest route to be
taken by a single guard agent to visually observe all corners
in a region [13]. Another version is concerned with finding
the minimum number of agents that can visually observe a
region at once. [14] There are variations in the line-of-sight
capabilities and world knowledge of the escort agents. Most
of these problems share the common requirement of visiting
all corners and edges in order to ensure the discovery of any
rogue evaders.

We propose the visibility-based escort problem, a novel
problem that is closely related to the visibility-based pursuit-
evasion problem. In the context of the classic pursuit-evasion
problem, the pursuer is re-titled as the escort and has the
mission of safely escorting other vulnerable agents (VIPs)
through an environment by ensuring they remain out of the
line of sight of adversaries.

The escort agent establishes regions safe for VIPs to move
within by clearing areas of adversaries. A VIP is considered
safe if it is not within the line of sight of a region that is
potentially occupied by an adversary. Many concepts funda-
mental to the visibility-based pursuit-evasion algorithms can
be applied to the escort problem. In this paper, we refer to the
visibility-based pursuit-evasion problem simply as the pursuit-

Lance Fletcher

Priyankari Perali

evasion problem for brevity; however, in literature these names
refer to different problems.

The escort problem can be applied to many different real
world applications which require the safe escorting of one
or multiple entities through an environment. Utilizing robots
as escorts decreases the amount of people who need to be
placed in high risk situations. A possible application and
the original inspiration for this research is the escorting of
politicians. Additionally, this approach can be extended to law
enforcement or hostage retrieval scenarios where officers or
hostages are modeled as VIPs. The application of our method
allows for robot escorts to provide an additional layer of
security to humans when attempting to navigate through or
escape from a hostile environment.

This paper is organized as follows: a review of previous
related works (Section II), a formal problem statement (Section
IIT), the method used to solve the escort problem (Section
IV), experimental results (Section V), and concluding remarks
(Section VI).

II. RELATED WORK
A. Escort Problems

To the best of our knowledge, the type of escort problem
described in this work is novel and thus no previous solutions
exist. Other escort problems have been studied but they do not
have the same objective as the proposed problem. In [5], the
escorting is done by surrounding an entity whose path is not
known with multiple robots. The goal is to limit the escape
windows of the entity by equally distributing the robots around
it. More related to our problem, [6] accounts for unknown
adversaries having a view of the VIP; however, they attempt
to limit the adversaries’ view of the VIP by surrounding it with
multiple robots. Our approach utilizes a single escort robot to
clear areas in an environment of adversaries to find a safe path
for the VIP to take.

B. Pursuit-Evasion

The escort problem presented has many similarities with
the visibility-based pursuit-evasion problem in which one or
multiple agents work together to find dynamically moving
adversaries. Given an environment, a solution to the pursuit-
evasion problem will specify a path for the pursuer to take such
that it is guaranteed that any adversaries will eventually be
discovered. In the escort problem, the escort has a similar role
to the pursuer, since both are capable of clearing areas within
the environment. Provably complete and optimal solutions
to the pursuit-evasion problem have been found [8], [11].
The pursuit-evasion problem has real-world applications in

security and search and rescue. In [7], the pursuit-evasion
problem is first presented in the form of a graph traversal
algorithm. A generalization of the single-agent algorithm for
multiple pursuers is presented in [2]. Much of our approach is
based on concepts from the work of Guibas et al., specifically
the concept of an information space which allows for the
environment to be discretized into conservative regions. A
conservative region is an area within the environment which
maintains the same shadow information as a function of the
location of the pursuer [8]. A more general overview of this
scheme is covered in [10]. Section IV elaborates more on the
use of conservative regions in this work. A major difference
between the pursuit-evasion problem and the escort problem is
the latter does not require every area within the environment
to be viewed. This is because solutions to the escort problem
only require guaranteeing the safety of the VIP along a path
at all times and not a search for an adversary.

III. PROBLEM STATEMENT

The escort problem seeks to generate a strategy for a single
escort agent to safely escort one or multiple VIP agents
through an polygonal environment while protecting them from
line-of-sight threats.

A. Environment and Agents:

e The Environment: A two-dimensional simply-connected
polygonal closed free space F' C R2.

o Visibility Polygon: The set of all regions V(q) C F
visible from a single point ¢ € F'.

o VIP Agents: Considered the “important” agents that need
to be protected at all times and escorted to the goal
location. The solution to this problem finds a safe path
for the VIP agents to take. A safe path ensures VIPs
remain out of the line of sight of regions which potentially
contain adversaries. Therefore, our solution does not need
to explicitly consider the number of VIP agents or their
specific locations.

o Adversary Agents: Adversaries pose a line-of-sight threat
to VIP agents. Similar to VIPs, we do not explicitly
consider the number of or location of adversaries. Rather,
we employ a worst-case approach to ensure a correct
solution is found by assuming that all regions which could
contain an adversary do. This assumption is common
in pursuit-evasion problems as evaders are capable of
moving at an unbounded speed.

o Escort Agent: The escort agent is modeled as a single
point that can move freely through the environment.
The escort has omnidirectional vision. It is assumed that
adversaries are unable to neutralize escorts, but escorts
are able to neutralize adversaries. Let e(t) € F represent
the escort agent’s position at time t. All regions within
the visibility polygon V(e(t)) are considered clear of
adversaries.

B. Shadows

Shadows: All regions S = F \ V(e(t)) that fall outside
of the visibility polygon of the escort agent. Shadows are
classified as either cleared or contaminated.

o Cleared Shadows: The set of shadows where it is not pos-
sible for an adversarial agent to exist. Cleared shadows
arise as a result of previous movements by the escort.
Whenever a shadow appears in a 2D space as a result
of escort movements it will remain cleared until coming
into contact with a contaminated shadow. Figures 1 and
2 show an example of this.

o Contaminated Shadows: The set of shadows where it
is possible for an adversary to exist. Since we model
the speed of adversaries as unbounded, we assume that
every point inside a contaminated shadow could contain
an adversary. The VIPs must never be visible from any
point within a contaminated shadow.

Fig. 1: Initial state of shadows for given escort, where all shad-
ows are assumed to be contaminated. Contaminated shadows
are represented in pink. Escort represented as black point.

Fig. 2: Next state of shadows. Contaminated Shadows are
represented in pink. Cleared Shadows are represented in light
blue. Escort represented as black point.

The status of each shadow is not guaranteed to be constant.
This is due to the occurrence of shadow events. These shadow
events have four types: merge, disappear, appear, and split [8].

The dynamic nature of shadows also extends to their status
as being either cleared or contaminated. When handling transi-
tions between states, the contaminated shadows are transferred
via the overlapping rule. The overlapping rule states that if a
shadow of the current state overlap with any contaminated
shadows of the previous state, that shadow of the current state
will be contaminated.

An example of how the overlapping rule affects the state is
shown in Fig. 1 and Fig. 2. Fig 1 represents the initial state.
For any initial state within this problem, we assume all the
shadows to be contaminated. Fig. 2 represent the next state.
As shown, the escort moves upward, resulting in a different
set of shadows. However, in this case we only consider the
shadows that overlapped any of the previous shadows to be
contaminated. As a result, the bottom two shadows (blue) are
clear. This is demonstration of the the common rule that any
newly appearing shadows start in a cleared state.

C. Safe-zones

e Safe-Zones: The set of all regions that fall outside of
the accumulated visibility polygon of all contaminated
shadows. Simply put, these are the regions where a
VIP agent can safely exist. Safe zones are an important
element of our state representation. We only consider
those which are VIP-contaminated.

o VIP-contaminated Safe-Zones: The subset of safe-zones
that are reachable by a VIP considering the previous
actions of an escort agent up to a point in time. Figure
3 provides an example of a configuration in which
there exists both VIP-contaminated safe-zones and VIP-
unreachable safe-zones.

It is important to note that the overlapping rule as used
for shadows extends to safe-zone state transitions. Safe-zones
that are not VIP-contaminated are those that do not satisfy the
overlapping rule i.e. if there is no point in a current safe zone
that overlaps with with a previous state’s VIP-contaminated
safe zone, the current safe zone is considered VIP-unreachable.
An example of this is shown in Fig. 3. In Fig. 3, there are two
safe-zones. However, the right most safe-zone (light purple) is
not considered to be VIP-contaminated. This is because it does
satisfy the overlapping rule. The safe-zone has no overlap with
the previous state’s VIP-contaminated safe-zone (light green).

D. Conservative Regions

Conservative Regions: Regions within the environment
where every position within a region maintains the same
shadow information. The boundaries of conservative regions
specify where shadow events occur. If an escort crosses the
boundary of a conservative region, it is known that a significant
change to the shadows in the environment will occur. These
regions are calculated with a method of ray shooting between
vertices within the environment. An in-depth explanation of
this process can be found in [8] and [11].

IV. METHOD

The current method consists of three main components.
First, a graph of positions is constructed from the conservative

Fig. 3: The problem state. Contaminated shadows represented
in pink. VIP-contaminated safe zones represented in light
green. All other safe zones represented in light purple. Escort
represented as black point.

region discretization of the environment. Second, a transition
black box function is used to calculate a new state given a
previous state and a new escort location. Finally, a breadth
first search algorithm is applied to the information graph to
find a path for the escort to take to create a safe path for the
VIPs to reach the goal location.

A. Problem State Representation

In the escort problem, a state contains all the informa-
tion needed to determine the status of the environment. A
state contains the escort’s position, a list of all contaminated
shadows, and a list of all VIP-contaminated safe-zones. From
this information, it can be determined what areas of the
environment are VIP-safe. An important characteristic of a
state is it is not solely based on the position of the escort,
but also the path taken by the escort to be at a position. It
is possible for the escort to be in a position, take a path that
eventually returns back to the same position, and the state can
be different. This is because the state’s list of contaminated
shadows and VIP-contaminated safe-zones are dependent on
the previous actions of the escort. For example, in figure 2,
it can be seen that the escort is located at the center of the
environment with two cleared shadows present at the bottom.
These shadows are cleared because the escort had previously
cleared the area which now contains the two cleared shadows.
If the escort had started at the center of the environment those
shadows would be contaminated.

B. Position and Information Graphs

After defining a state for the escort problem, it is now
known that if the escort takes a calculated path throughout
the environment a solution will be produced if one exists. But
finding a path for the escort to take is non-trivial. Similar to
methods used in the pursuit-evasion problems [8], the escort
problem involves two graphs: the position graph G p, and the
information graph G7.

G p is a graph where each node represents a unique position
that the escort can traverse to and from. Since the environment

is continuous, a method is needed to determine the exact posi-
tions that compose G p. A simple but inefficient method would
be to discretize the environment into a grid where each cell’s
centroid is a node in G p. In this work a more efficient method
based on conservative regions is employed. Since conservative
regions distinguish where important shadow events occur and
since safe-zones are calculated from the shadow information,
these regions also identify important events related to the es-
cort problem. As shown in figure 4, once the environment has
been discretized into conservative regions, the centroid of each
region is used as a node in G p. Adjacent conservative regions
correlate to adjacent nodes in Gp. Not enough information is
contained within Gp to search for a path for the escort to take,
but it does provide information about the relationship between
specific positions in the environment. Ideally, the environment
would be discretized into regions which distinguish critical
safe-zone events, i.e. safe-zones appearing and disappearing;
however, currently it is not known how to obtain this kind of
discretization.

In G1, each node corresponds to a unique state. The breadth
first search is conducted on this graph since it is capable of
determining when a safe-path for the VIP is found. Performing
a search on a graph consisting of problem states allows for
more complex paths to be taken by the escort. This gives the
escort the ability to be at a position, take a path which clears
some portion of the environment, and then return back to the
original position. Therefore, this graph representation provides
a way to search for a series of escort movements that are likely
to result in a solution.

|

Fig. 4: The graph constructed from conservative regions. The
blue lines represent boundaries of the conservative regions.
The red dots represent the possible positions of states within
the information graph. The red lines specify which positions
are reachable from other positions.

C. Transition Black Box

The transition black box is a function that determines a new
problem state, given a current problem state and a new escort
position.

The function takes the current problem state and escort
position as inputs. From this, it determines the shadows and
safe-zones associated within the given escort position. These
are computed based off the descriptions in Section III. Then,

the contaminated shadows are determined by checking for any
overlap between the new shadows and the problem state’s
contaminated shadows. If there is any overlap, meaning that
at least one point is shared between a new shadow and a
problem state’s contaminated shadow, then the new shadow
is considered to be contaminated. This is repeated for every
shadow associated with the new escort position. The same
methodology is used to determine new problem state’s VIP-
contaminated safe-zones.

The function’s objective is to maintain the information
between problem states as well as acknowledge any changes
within the information that may have occured.

Algorithm 1 TransitionBlackBox
Input: problemState ps, Position newEscort Pos
Output: problemState ps’

: vipContaminSafe + []
: contaminShadows + []
. shadows <+ computeShadows(newEscort Pos)
for each s € shadows do
for each cs € ps.contaminShadows do
if overlap(s, cs) then
conatminShadows.append(s)
end if
end for
. end for
: safezones < computeSafeZones(shadows)
: for each sz € safezones do
for each v € ps.vipContaminSafe do
if overlap(sz,v) then
vipContaminSafe.append(sz)
end if
end for
: end for
. ps’.escortPosition < escortPosition
. ps’.contaminShadows < contaminShadows
. ps’ wipContaminSafe < vipContaminSafe
: return ps’

R A A S ol S s

[T N T N S e S Sy U S g S ey

D. Breadth First Search

The search phase is executed through the implementation of
Breadth First Search (BFS) across problem states beginning
with the initial problem state. The algorithm terminates when
there exists a path to a problem state with a VIP-contaminated
safe-zone that contains the VIP’s goal position.

The algorithm avoids cycles through the implementation of
a hashing function built into the problem state class. If the
hash value has been seen before, the search determines that
the exact state in terms of escort position and shadow states
has been seen before should not be added to the queue.

The search cannot directly jump from one node to another
node along the conservative region graph. Instead, each leg
of the search needs to be broken into a group of sequences
sufficiently frequent that there are no missed safe-zone critical
events. An example of such an occurrence would be the

Algorithm 2 SafePathBFS
Input: problemState ps, Position g
QOutput: Path P

1: P+ H

2: visited < Dictionary(problemState, Boolean)
3: () < empty queue

4: endState < null, pathFound < False

5: @).enqueue(ps)

6: while () is not empty and —pathFound do
7: curr <).dequeue()

8: visisted|curr] + True

9: if g € currwvipContaminSafe then

10: endState < curr, pathFound < True
11: end if

12: for each neighbor n of curr do

13: ns <+ TransitionBlackBox(curr, n)

14: if ns ¢ visited then

15: visited[ns] < True

16: @.enqueue(ns)

17: end if

18: end for

19: end while
20: if pathFound then

21: 5 < endState

22: while s.parent do

23: P.append(s.position)
24: s < s.parent

25: end while

26: end if

27: return P

disappearance of a VIP-contaminated safe zone and reappear-
ance shortly after. This safe-zone would reappear as VIP-
unreachable because of the short segment of time where
the VIP would have been exposed. It is likely for such an
occurrence to go undetected if the steps between each leg of
the search are too sparse.

V. RESULTS

We implemented and tested the described method on a
variety of escort scenarios to analyze its ability to find safe
paths for VIPs through path planning of the escort agent. The
Python computation geometry library scikit-geometry [12] was
used for geometric visualization.

As seen in figure 5 our method is capable of finding solu-
tions in a variety of scenarios involving environments which
vary in complexity and size. Each sub-figure within figure
5 shows the final state of the environment from the found
solution. Each solution shows the VIP-contaminated safe-zone
(light-green) contains the goal point (green dot), thus providing
a safe path for the VIPs to take. Additionally, it can be seen
that the paths taken by the escort are non-trivial and often
require the clearing of many areas within the environment
before a safe path can be found. An notable observation of
our solutions is that not every contaminated shadow (pink)

was cleared in the final solution (except environment c). This
distinguishes the solutions found by our method from the
solutions to a typical pursuit-evasion problem. When given a
large environment with a relatively small distance between the
initial VIP location and the goal point, our method will clear
the least amount of contaminated shadows needed; however,
a pursuit-evasion based path for the escort would take longer
to compute since every shadow must be cleared for a solution
to be found.

In all the escort scenarios tested, during the escort’s exe-
cution of the solution path, the VIP-contaminated safe-zones
never move as a whole, but only expand. We attempted to
find escort scenarios where a solution would cause the VIP-
contaminated safe-zone to be shifted throughout the envi-
ronment and not expanded, but were unable to do so. It is
suspected that holed environments have solutions which would
cause the safe-zones to relocate across the environment rather
than expand.

Table I shows the computation time needed for the various
escort scenarios shown in 5. As expected, paths which require
the escort to clear more contaminated areas take longer to
find. A majority of the required computation time is due to the
amount of geometric calculations performed in the transition
black box function. Despite the escort problem requiring the
paths for both the VIP and the escort to be found, our
representation of the problem state simplifies the problem.
Rather than searching a state space which accounts for the
exact position of both the escort and the VIP, our method need
only take into account the position of the escort. Searching a
state space which includes the positions of two agents would
be computationally more expensive.

Figure 5 Environment | Time (seconds)
a 18.57
b 29.46
c 124.99
d 211.33
e 668.54
f 2229

TABLE I: Computation time needed to find solution for each
escort scenario shown in Figure 5.

VI. CONCLUSION

In this paper we introduce the novel visibility-based escort
problem and provide an algorithm capable of solving it.
The algorithm utilizes an environment discretizion method,
transition function, and a state search algorithm to determine
a non-trivial path for the escort, resulting in a safe path for
the VIP agents to follow. The method presented only requires
the path of the escort to be determined and not the path of the
VIP, thus decreasing the size of the state space needing to be
searched. With our approach we demonstrate that the escort
does not need to clear the entire environment of adversaries
in order to find a safe path for the VIPs. This proves the

(a)

= s

(b)

=

(d

G

Jat
=

Fig. 5: Final state of each environment based on the found solution. In each sub-figure the blue dot represents the starting
position of the escort. The red dot represents the last position of the escort. The black lines depict the path taken by the escort.
The green dot represents the goal position for the VIPs. The light green regions represent VIP-contaminated safe-zones at the

end of the escort’s path. Similarly, the light pink regions represent contaminated shadows at the end of the escort’s path.

value of utilizing our method rather than employing the more
exhaustive pursuit-evasion approach.

Many questions regarding the escort problem remain to
be addressed in future research. A particularly important
direction for further research should focus on discretizing
the environment into safe-zone conservative regions. Similar
to how a conservative region in the pursuit-evasion problem
maintains the same shadow information, some regions within
the environment could also maintain the same safe-zone
information. Initial investigations in finding these types of
conservative regions have proven it to be challenging problem.

Another scenario which deserves further research is that
containing multiple escort agents. This scenario would allow
safe paths for VIPs to be discovered for more complex
environments; however, with multiple agents, the state space
searched increases significantly and could result in compu-
tational complexity issues found in other related multi-agent
problems [2]. Lastly, although we did not conduct any testing
in holed polygonal environments, we believe our method will
extend to such environments without issue.

ACKNOWLEDGMENT

We would like to thank Jason O’Kane for his guidance from
start to finish with the project. Additionally, we would like to

thank Nicholas Stiffler for providing code which helped in the
implementation of our method.

REFERENCES

[1] Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon. Visibility-based
pursuit-evasion with limited field of view. in Proc. of the National
Conference on Artificial Intelligence. San Jose, California, July 2004.

[2] N. M. Stiffler and J. M. O’Kane, ”A complete algorithm for visibility-
based pursuit-evasion with multiple pursuers,” 2014 IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp. 1660-1667,
doi: 10.1109/ICRA.2014.6907074.

[3] J. W. Durham, A. Franchi, and F. Bullo. Distributed pursuit-evasion
without mapping or global localization via local frontiers. Autonomous
Robots, 32(1):81-95, 2012.

[4] Tovar B, LaValle SM. Visibility-based Pursuit—Evasion with Bounded
Speed. The International Journal of Robotics Research. 2008;27(11-
12):1350-1360. doi:10.1177/0278364908097580

[5] Antonelli, Gianluca & Arrichiello, Filippo & Chiaverini, Stefano.
(2008). The Entrapment/Escorting Mission. Robotics & Automation
Magazine, IEEE. 15. 22 - 29. 10.1109/M-RA.2007.914932.

[6] Bhatia, Taranjeet & Solmaz, G & Turgut, Damla & Bo6loni, Ladislau.
(2015). Two algorithms for the movements of robotic bodyguard teams.

[7]1 D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, edi-
tors, Theory and Application of Graphs, pages 426—441. Springer Verlag,
Berlin, 197

[8] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal on Computational Geometry and Applications,
9(5):471-494, 199

[9] Search and pursuit-evasion in mobile robotics A survey Timothy H.
Chung - Geoffrey A. Hollinger - Volkan Isler

[10]

(1]

[12]
[13]

[14]

J. Yu and S. M. LaValle, "Shadow Information Spaces: Combinatorial
Filters for Tracking Targets,” in IEEE Transactions on Robotics, vol. 28,
no. 2, pp. 440-456, April 2012, doi: 10.1109/TRO.2011.2174494.
Stifler NM, O’Kane JM. Complete and optimal visibility-based
pursuit-evasion. The International Journal of Robotics Research.
2017;36(8):923-946. doi:10.1177/0278364917711535

Wolf Vollprecht, https://github.com/scikit-geometry/scikit-geometry

W Chin and S Ntafos. 1986. Optimum watchman routes. In Proceedings
of the second annual symposium on Computational geometry (SCG ’86).
Association for Computing Machinery, New York, NY, USA, 24-33.
https://doi.org/10.1145/10515.10518

Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. 2021.
The Art Gallery Problem is -complete. J. ACM 69, 1, Article 4 (February
2022), 70 pages. https://doi.org/10.1145/3486220

